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Discrete Symmetry Breaking for Certain Short-Range
Interactions
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Georgii's theorem ensures that, restricted to two-dimensional planes, a single
ocean (i.e., infinite connected component) of a ground state and islands
(i.e., finite connected components) are observed in lattice spin systems at suf-
ficiently low temperature. This paper extends his results for higher dimensional
hyperplanes. Our proof is mainly based on a kind of Peierls argument and is
different from Georgii's, which relies on the percolation method.

KEY WORDS: Gibbs measure; phase transition; lattice spin system; discrete
symmetry breaking.

1. INTRODUCTION

A theorem due to Georgii (Theorem (18.25) in ref. 1) concerns phase tran-
sitions in classical lattice spin systems with short-range interaction. When
the dimension of the underlying lattice Zd is two, from his theorem, one
can construct Gibbs measures with the following feature at sufficiently low
temperature. With respect to each Gibbs measure, with probability one,
there is a unique infinite connected region of the corresponding ground
state whose complement is composed of only finite connected components.
One can expect that the same result holds for the lattice Zd (d�3) and,
indeed, we shall prove it in the main theorem (Theorem 1).

To explain the difference between the original theorem due to Georgii
and ours, let us apply these two results to the simple case, namely the
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well-known Ising model. The Ising model on the lattice Zd is described by
the Hamiltonian

H(|)=& :
[i, j ]/Zd

&i& j&=1

|i |j , |=(|j ) j # Zd # [\1]Zd

For the two-dimensional Ising model, two theorems give the same
result: If the temperature is sufficiently low, there exist Gibbs measures ++

and +& which satisfy the following property. With respect to the Gibbs
measure ++ (respectively +&), with probability one, there is a unique infinite
connected region of +1 spins (respectively &1 spins) whose complement
is composed of only finite connected components. In other words, we
observe ``an ocean and islands'' of +1 spins (respectively &1 spins) under
++ (respectively +&) on the whole lattice Z2.

On the other hand, in the case of three or more than three-dimen-
sional Ising model, they give different results. The original theorem con-
structs Gibbs measures +P

+ and +P
& depending on each given two-dimen-

sional plane P of Zd. With respect to +P
+ and +P

& , ``the ocean and islands''
can be observed only on the plane P, not on the whole lattice Zd. It is
however natural to expect the existence of Gibbs measures for which ``the
ocean and islands'' are observed on the whole lattice Zd.

The aim of this paper is to construct such Gibbs measures in higher
dimensions. Georgii used certain topological property of two-dimensional
plane Z2 such as the plane can be separated into two parts by a connected
path with infinite length. We shall use different property of hyperplane Zd

(d�2), see Corollary 1 and Corollary 2 below.
Before going on to the main subject, we shall summarize in the next

section some notations and terminology mainly according to Chapter 17
and Chapter 18 in ref. 1.

2. NOTATIONS AND MODELS

We consider lattice spin systems on Zd (d�2) where each spin
variable takes values in a measure space (E, E, *). We assume that (E, E)
is a standard Borel space and *(E )<�. Let (0, F) denote the configura-
tion space (E, E)Zd

. We denote by _4 the restriction for each spin con-
figuration | # 0 to the components belonging to 4/Zd, i.e., _4(|)=
(|i ) i # 4 . For each 2/Zd, we define the _-algebra F2 by

F2 ] _[_4 ; 4/2, >4<�]

Let C=[0, 1]d be a unit cube in Zd and L=[4/Zd | 0<>4<�].
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Hamiltonians. We call a bounded measurable function 8: EC � R
an interaction potential. For an interaction potential 8 and 4 # L we
define the Hamiltonian H 8

4 : 0 � R by

H 8
4(|) ] :

i: C(i) & 4{<

8(_C(i)(|)) (1)

Here C(i)=C+i is the translation of C by i # Zd. In the expression
8(_C(i)(|)), we identify EC(i) with EC in the natural way. We remark that,
by definition, the interactions of the spin systems are short-range and
translation invariant.

Gibbs Measures. The finite volume Gibbs measure for 8 in 4 # L

with boundary condition | # 0 is the probability measure #8
4( } | |) on

(0, F) defined by

#8
4(A | |) ] (Z8

4(|))&1 | *4(d`) exp[&H8
4(`|Zd "4)]

_1A(`|Zd "4) (A # F) (2)

where Z8
4(|) is the normalization factor, *4(d`)=>i # 4 *(d`i ) and

`|Zd "4 # 0 is defined by

(`|Zd "4) i={`i

|i

if i # 4
if i # Zd "4

A Gibbs measure + for 8 is defined as a probability measure + on
(0, F) which satisfies

+(A | FZd "4)=#8
4(A | } ) +-a.s. for all A # F and 4 # L (3)

where the left-hand side stands for a conditional probability. The set of all
Gibbs measures for 8 is denoted by G(8).

To investigate the dependence on temperature, throughout this paper,
we study the set G(;8) with the parameter ;>0 which is inverse tem-
perature.

Symmetries. In order to describe symmetries of the interactions 8
we introduce two classes of transformations of (E, E)C; reflections and pure
spin transformations.
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(i) Reflections (rk)1�k�d : rk is the spatial reflection of |=
(|i ) i # C # EC with respect to the hyperplane [i # Rd | ik= 1

2] defined by

(rk |) j ] |Rk j and (Rk j) l ] {1& jl

jl

if l=k
otherwise

(1�l�d )

(4)

for each j # C.

(ii) Pure spin transformations: A transformation { of (E, E)C is
called a pure spin transformation if {| (| # EC) can be written as

{|=({i|i ) i # C (5)

where {i 's are invertible transformations of (E, E) such that * b {&1
i =*.

Each transformation defined in (i) and (ii) can be extended in a
natural way to that of (0, F), which are denoted by the same letter rk and {,
respectively. In fact, the reflection transformation rk of (0, F) is defined
by the same form (4), while the pure spin transformation {=({i ) i # Zd of
(0, F) is defined by

{i={j if ik# jk mod 2 for all 1�k�d

Let T denote the transformation group on (E, E)C or (0, F) which is
generated by the transformations (i) and (ii). For each interaction poten-
tial 8, let I(8) be the subgroup of T which consists of all transformations
{ # T under which 8 is invariant, i.e., 8 b {&1=8.

Domains of G # EC in Each Spin Configuration |. We con-
sider a (d& p)-dimensional hyperplane P of the form

P=[i # Zd | ik1
=a1 , ik2

=a2 ,..., ikp
=ap] (0�p�d&2)

where a1 , a2 ,..., ap # Z and 1�k1<k2< } } } <kp�d. Note that if p=0 then
P denotes the whole lattice Zd. Since the Hamiltonians (1) are translation
invariant, we can assume that the hyperplane P contains the origin O
without loss of generality. That is,

P=[i # Zd | ik1
=0, ik2

=0,..., ikp
=0] (0�p�d&2) (6)

For each G # EC and | # 0, the domains of G for | in P, which is
denoted by VP(G, |), is defined by

VP(G, |) ] [i # P | _C(%&i|) # riG] (7)
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where %i| # 0 is the translation of | # 0 defined by (%i|) j=|j&i for each
j # Zd and ri=r i1

1 b r i2
2 b } } } b r id

d (i=(i1 ,..., id ) # Zd ) with reflections (rk)1�k�d

introduced above.

The Ocean of G in Each Spin Configuration |. We need two
norms | } | and & }& on Zd respectively defined by

|i |= max
1�k�d

|ik | and &i&= :
d

k=1

|ik | (i # Zd )

For each subset A of Zd we say that A is connected if for any i, j # A
there exists a finite sequence [i (0),..., i (n)] in A such that i (0)=i,
&i (m)&i (m+1)&=1 (0�m�n&1) and i (n)= j. Replacing & }& with | } |, we
define the term ``Vconnected'' similarly.

For each G # EC and | # 0, we let !P(G, |) denote the union of all
infinite connected components of VP(G, |). Further we define !0

P(G, |) by

!0
P(G, |) ] {!P(G, |)

if !P(G, |) is connected and all Vconnected
components of P"!P(G, |) are finite sets (8)

< otherwise

We should notice that !0
P(G, |) stands for ``the ocean of G and

islands'' on the hyperplane P. The following lemma concerns a property of
!0

P(G, |). It follows by standard arguments from Lemma 4 and Corollary
2 stated below.

Lemma 1. For each G # EC, the event [!0
P(G, } ){<] is measur-

able with respect to the tail _-algebra T ] �4 # L FZd "4 .

Local Ground States. For each =�0 and interaction potential 8,
the set G=(8) # EC is defined by

G=(8) ] [| # EC | 8(|)�m8+=] (9)

where m8 ] sup[t # R | *C(8�t)=0]. Roughly speaking, G=(8) denotes
the set of all local ground states.

Now, we shall proceed to our main theorem.

3. MAIN THEOREM

For each hyperplane P of the form (6), we introduce a condition [P]
for interaction potentials 8.
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Condition [P]:

(i) 8 has N distinct sets G1 , G2 ,..., GN # EC satisfying the following
three conditions.

(a) For any sufficiently small =>0,

G=(8)/G1 _ G2 _ } } } _ GN

(b) For each subset F=[i # C | ik=a] of C with a # [0, 1] and
kth axis contained in P (they are called P-faces in ref. 1),

the sets (G1)F , (G2)F ,..., (GN)F are pairwise disjoint

Here (G)F=[(|i ) i # F # EF | | # G] for G # EC, which is the restriction of G
to F.

(c) For each 1�m, n�N, there exists some { # I(8) with
{Gm=Gn .

(ii) rk # I(8) for all 1�k�d.

The following is our main theorem.

Theorem 1. Let 8 be any interaction potential satisfying the
condition [P] for any given hyperplane P of the form (6).

(i) For any sufficiently large ;, there exist N distinct Gibbs measures
+1 , +2 ,..., +N # G(;8) such that

+n(!0
P(Gn , } ){<)=1 (1�n�N )

(ii) These measures (+n)1�n�N enjoy, in addition, the following
properties.

(a) lim; � � +n(!0
P(Gn , } ) % O)=1.

(b) For all { # I(8) satisfying {Gm=Gn , {+m=+n hold. In par-
ticular, if rkGm=Gn for some reflection rk # I(8) with k th axis contained
in P, then in addition %uk

+m=+n hold, where uk is the unit vector in direc-
tion k. Here {+m and %uk

+m are defined by {+m=+m b {&1 and %uk
+m=

+m b %&uk
, respectively.

We notice that the Gibbs measures (+n)1�n�N depend on the hyper-
plane P. We suppress P-dependence of the measures.

Remark. (1) The statement (ii)(b) contains the case m=n, which
gives symmetries of (+n)1�n�N .
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(2) The Georgii's original theorem (Theorem (18.25) in ref. 1) is a
special case of Theorem 1 that P is a two-dimensional plane. When the
dimension of P is more than two, the assertion of Theorem 1 does not
follow from the original theorem. Theorem 1 is an extension of the original
theorem for higher dimensional hyperplanes P.

(3) We emphasize Theorem 1 holds in particular for P=Zd. The case
where the dimension of P is less than d is also interesting. Such an example
is given in Section 18.3.10. of ref. 1, where P is a two-dimensional plane in
the lattice Z3.

The proof of Theorem 1 will be given in the next section.

Example. Now we apply Theorem 1 to the Ising model whose lat-
tice dimension is at least two. The space of spin variables is E=[\1] and
the Hamiltonian (1) is given by the interaction potential 8: EC � R defined
as

8(|)=&2&d :
[i, j ]/C
&i& j&=1

|i|j for | # EC (10)

We introduce the spin-flip transformation {rev of (E, E)C by

{rev|=(&| i ) i # C for | # EC

Let G\=[|\] # EC, where (|\) i=\1 (i # C). We have G\={rev G�. It
can be easily checked that the potential 8 satisfies the condition [P] with
G+, G& and {rev # I(8) for any hyperplane P of the form (6).

Thus, by Theorem 1, we have the following result for any fixed hyper-
plane P of the form (6). For any sufficiently large ;, there exist two Gibbs
measures ++ , +& # G(;8) such that

+\(!0
P(G\ , } ){<)=1

Furthermore the measures ++ and +& satisfy

lim
; � �

+\(!0
P(G\ , } ) % O)=1

and

{rev+\=+�

We remark that this result is not a new result. The Pirogov�Sinai
theory implies this result immediately for P=Zd and with certain addi-
tional small arguments for general hyperplanes P, see ref. 3.
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4. PROOF OF THEOREM 1

In this section we shall give the proof of Theorem 1. In the first half,
we shall mainly follow the argument in the proof of Theorem (18.25) in
ref. 1. We fix a hyperplane P of the form (6). We let 8 be an interaction
potential which satisfies the condition [P].

We start with constructing the Gibbs measures (+n)1�n�N in the same
way as Theorem (18.25) in ref. 1. Let %#8

4l
denote the finite volume Gibbs

measure in 4l ] [&l, l]d & Zd for 8 with periodic boundary condition
defined by

%#8
4l

(A) ] (%Z8
4l

)&1 |
A

*4l (d`) exp _& :
i # 4l

8(_C(i)( �̀ ))& (A # E4l )

Here %Z8
4l

is the normalization factor and �̀ # 0 is the periodic continuation
of ` # E4l, i.e., ( �̀ )i ] `j(i) (i # Zd ), where j(i) is the unique element of 4 l

with j(i)=i mod 4l .
We denote by G0(;8) the set of all cluster points in the L-topology

(see (4.2) in ref. 1) of any sequence of probability measures (%#;8
4l

_$|l
) l�1

of (0, F), where $|l
is the Dirac measure on (E, E)Zd "4l at an arbitrary

|l # EZd "4l.
G0(;8) has the following three properties.

v G0(;8){<.

v G0(;8)/G(;8).

v Each + # G0(;8) is invariant under { # I(8).

The first property follows from the fact that (E, E) is a standard Borel
space, see Proposition (18.12) in ref. 1.

Now we take an arbitrary Gibbs measure + from G0(;8) and con-
struct probability measures (+n)1�n�N as

+n ] +( } | An) and An ] [!0
P(Gn , } ){<] (1�n�N ) (11)

where +( } | An) stands for the elementary conditional probability +( } & An)�
+(An).

By Lemma 1, each An is a tail event, which implies that +n # G(;8).
We assert that these Gibbs measures (+n)1�n�N enjoy all the properties of
Theorem 1. In fact, its proof goes quite similarly to that of Theorem (18.25)
in ref. 1, and what we really need to show, except for the property (ii)(a),
is that each +n is well-defined, that is the positivity of +(An). Note that
the condition [P] ensures the following three properties (the proof of
Theorem (18.25) in ref. 1 essentially works also in our setting).
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v [!0
P(G=(8), } ){<]/�N

n=1 An .

v An & Am=< for all distinct n, m.

v +(A1)=+(A2)= } } } =+(AN) for all + # G0(;8).

So the following proposition, which implies the positivity of
+(!0

P(G=(8), } ){<), ensures the positivity of +(An). This proposition also
completes the proof of the property (ii)(a) in Theorem 1 in the same way
as Theorem (18.17) completes that of Theorem (18.25) in ref. 1.

Proposition 1. For each =>0 and '>0, there exists some ;0<�
such that

+(!0
P(G=(8), } ) % O)�1&'

for each ;>;0 and + # G0(;8).

To prove Proposition 1, we put 2P
L=[i # P | |i |�L] and

AP
L ] [| # 0 | P"VP(G=(8), |) has no Vconnected components 1

satisfying 2P
L & 1{< and >1>log L]

Proposition 1 immediately follows from the following two proposi-
tions.

Proposition 2. There exists a function z(=, ;) of =>0 and ;>0,
which satisfies the following two conditions.

(i) +(��
L=1 AP

L)�1&z(=, ;) for each + # G0(;8).

(ii) lim; � � z(=, ;)=0 for each =>0.

Proposition 3.

,
�

L=1

AP
L/[!0

P(G=(8), } ) % O] for each =>0

To prove Proposition 2, we need the following two lemmas.

Lemma 2 (Georgii(1, 2)). There is a positive number K such that for
each finite subset D of the hyperplane P and + # G0(;8)

+(D & VP(G=(8), } )=<)�t(=, ;)>D (12)

where t(=, ;)=Ke&=;�2.
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This is taken from Lemma (18.10) in ref. 1 in the form adapted to our
situation. The condition [P](ii) is essential for the proof.

Lemma 3 (Sinai(3)). Let j be a fixed site of Zd. The number of Vcon-
nected subsets 1 of Zd such that j # 1 and >1=# is at most eM#, where M
is a suitable positive constant.

This is a special case of Lemma 2.7 in ref. 3.

Proof of Proposition 2. To simplify description, without loss of
generality we assume that P is the whole lattice Zd (d�2). The general case
follows by the same argument. For notational convenience we use simple
notations V(G, |), 2L and AL instead of VZd (G, |), 2Zd

L and AZd

L , respec-
tively, which means 2L=[&L, L]d & Zd and

AL=[| # 0 | Zd"V(G=(8), |) has no Vconnected components 1 satisfying

2L & 1{< and >1>log L]

Also we assume that 8 satisfies the condition [Zd].
We notice that the following two statements are equivalent:

(i) Zd"V(G=(8), |) has a Vconnected component 1 such that
2L & 1{< and >1>log L.

(ii) There exists some Vconnected subset D of Zd such that

D & V(G=(8), |)=<, 2L & D{< and >D=[log L]+1

We let DL denote the family of all Vconnected subsets D of Zd satis-
fying 2L & D{< and >D=[log L]+1. Then we can write

0"AL= .
D # DL

[D & V(G=(8), } )=<]

Therefore

+ \ ,
�

L=1

AL+�1& :
�

L=1

+(0"AL)

�1& :
�

L=1

:
D # DL

+(D & V(G=(8), } )=<)

�1& :
�

L=1

(2L+1)d eM([log L]+1)t(=, ;)[log L]+1

=1& :
�

L=1

(2L+1)d (KeM&=;�2)[log L]+1
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Here in the third inequality we use Lemma 2 and the estimate

>DL�(2L+1)d eM([log L]+1)

which follows from Lemma 3.
By the way if we pick a constant ;0 so large that M+log K+d&

=;0 �2<&1, for any ;>;0 we have

:
�

L=1

(2L+1)d (KeM&=;�2)[log L]+1

� :
�

L=1

3ded log L+(M+log K&=;�2)([log L]+1)

� :
�

L=1

3de(M+log K+d&=;0 �2) log L

= :
�

L=1

3dLM+log K+d&=;0 �2<� (13)

Therefore if we set

z(=, ;)= :
�

L=1

(2L+1)d (KeM&=;�2)[log L]+1

then we see by the dominated convergence theorem that z(=, ;) converges
to zero as ; � �. Thus the proposition follows. Q.E.D.

Remark. The constant ;0 appearing in the proof of Proposition 2
increases with the dimension of P. It only gives an upper bound for the
critical inverse temperature. This means that our approach requires
stronger conditions on the inverse temperature in higher dimensions.

Proposition 3 is a consequence of the following series of geometrical
statements, see Lemma 4, Corollary 1 and Corollary 2. The proof of
Lemma 4 below is actually rather long and tedious, however intuitive
meaning might be clear and therefore we shall omit it.

For subsets A and B of Zd, we introduce the sets �AB and �*AB by

�A B ] [i # A | _j # B s.t. &i& j&=1]

�*A B ] [i # A | _j # B s.t. |i& j |=1]
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Lemma 4. Let V be any subset of Zd. Take any connected compo-
nent D of V and Vconnected component E of Zd"V.

(i) The sets �ED and �*DE are, if non-empty, Vconnected and con-
nected, respectively.

(ii) Any connected (respectively Vconnected) path from any x # D to
any y # E intersects the set �ED (respectively �*DE ).

For a finite subset B of Zd (d�2) we set A (respectively A$) the unique
infinite Vconnected (respectively connected) component of Zd "B. We intro-
duce the notations �ExtB and �*ExtB by

�ExtB ] �AB and �*ExtB ] �*A$ B

If any site of B belongs to some finite Vconnected (respectively con-
nected) component of Zd"A, then we say that A encloses (respectively
Vencloses) B.

The following corollary is an immediate consequence of Lemma 4.

Corollary 1. Suppose d�2.

(i) Let D be any finite connected subset of Zd. Then the set �ExtD
is Vconnected and Vencloses D.

(ii) Let D be any finite Vconnected subset of Zd. Then the set �*Ext D
is connected and encloses D.

Corollary 2. Suppose d�2. Let V be any subset of Zd which
includes at least one infinite connected component D. Suppose all Vconnected
components of Zd"V are finite. Then all Vconnected components of Zd "D
are also finite. Hence D is necessarily the unique infinite connected compo-
nent of V.

Proof of Corollary 2. Pick an arbitrary site not belonging to the
set D. By translation, we can assume that the site is the origin O without
loss of generality. Let EL denote the union of 2L and all Vconnected com-
ponents of Zd"V which meet �*Ext2L ; recall 2L=[&L, L]d & Zd. Now we
take L so large that D meets �*Ext2L . Then, by Corollary 1(ii) and the
definition of EL , the set �*ExtEL is contained in D and encloses the origin.
Therefore the origin belongs to some finite Vconnected component of
Zd"�*ExtEL . And further, since �*ExtEL/D, it belongs to some finite Vcon-
nected component of Zd"D. Q.E.D.
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Proof of Proposition 3. To simplify description, we assume again
that P is the whole lattice Zd (d�2). In all other cases the proof is similar.
We use simple notations V(G, |), !(G, |) and !0(G, |) instead of
VZd (G, |), !Zd (G, |) and !0

Zd (G, |). Further we use the notations 2L and
AL defined in the proof of Proposition 2.

We pick an arbitrary element | # ��
L=1 AL . We shall show that

!0(G=(8), |){< (14)

We let 1 be any Vconnected component of Zd"V(G=(8), |). We can
take a sufficiently large L with 2L & 1{<. Then the definition of AL

implies that >1 is at most log L. Thus

>1<� for all Vconnected components 1 of Zd "V(G=(8), |) (15)

Especially if we note that | # A1 , we see that Zd "V(G=(8), |) has no
Vconnected component 1 such that 1 & [&1, 1]d{<. Thus we find that
O # V(G=(8), |). In particular, we can take connected component D of
V(G=(8), |) which contains the origin.

Now we claim that

>D=� (16)

In order to show the claim (16), we suppose that >D<�. Then applying
Corollary 1(i), we find that �ExtD is Vconnected and Vencloses the origin.
Since D/V(G=(8), |), we observe that �ExtD/Zd "V(G=(8), |).

On the other hand, the definition of AL implies that >1�log | j | for
each Vconnected subset 1 of Zd"V(G=(8), |) and each site j # 1. Therefore
there exists no Vconnected subsets of Zd"V(G=(8), |) which Vencloses the
origin, in contradiction to the above. Hence we get (16).

By virtue of the properties (15) and (16), we can apply Corollary 2 with
V=V(G=(8), |). Consequently we conclude that D is just the unique infinite
connected component !(G=(8), |) of V(G=(8), |) such that all Vconnected
components of Zd"!(G=(8), |) are finite sets. That is, !0(G=(8), |)=
D{<. Q.E.D.
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